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As continuous fermentation offers economic advantages over the usual batchwise process, 
the present work was undertaken to provide a better understanding of the characteristics 
of a continuous propagator. Laboratory apparatus was developed which allowed 
sterile propagation of aerobic microorganisms in a stirred-tank reactor of the overflow 
type. Using Ps. Ruorescens, B. linens, and a strain of S. carlsbergensis a theoretical 
relation was shown between the mean retention time of the cells in the propagator and 
their growth rate. By proper adjustment of the flow rates, steady populations were 
attained. In incompletely buffered media, a steady cycling in yeast population was 
observed, which was traced to steady fluctuations in the pH which were 90 degrees out 
of phase with fluctuations in population. The phenomenon appears to arise from the inherent 
feedback in the system coupled with a metabolic lag. Fermentation of the medium 
was not complete, as only the propagation of cells was of interest. In a practical process 
additional holding tanks would be provided, so that end products could be obtained 
in high yield. 

OST STUDIES OF CONTISUOUS FER- M MENTATION have been concerned 
with producing consistently high yields 
of alcohol, yeast, or other specific 
materials (3, 77, 79).  I t  is appropriate 
that academic research in the field of 
bioengineering should undergird these 
applied studies with a more detailed 
inquiry into the behavior of living cells 
held in continuous culture. The purpose 
of this paper is to begin such an inquiry. 

When fermentation is carried out in 
a cascade of two or more stirred tanks 
connected in series, the first tank con- 
stitutes a propagator. Fresh nutrient 
is added to the propagator a t  constant 
rate and a constant level of liquid is 
maintained in the propagator by ar- 
ranging an overflow at  the desired 
height. The rate of withdrawal is at 
all times equal to the feed rate and is 
generally so rapid that fermentation 
within the propagator is not complete, 
and all nutrients remain in excess of the 
cell requirements. Under such condi- 
tions, the cell population is limited 
solely by the washout of cells. 

Novick and Szilard (74, 75) utilized 
a continuous propagator to study micro- 
bial genetics, especially mutation rates. 
Their apparatus, which they chose to 
call a chemostat, was operated in such a 
manner that growth was limited by 
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deficiency of a particular nutrient, 
rather than by the washout rate. 

The present work follows more closely 
that of Adams and Hungate ( I ) .  Using 
a continuous yeast propagator these 
investigators showed how the flow rate 
could be predicted from the growth curve 
of the organism. Several points raised 
in their paper, however, seemed to 
warrant further study. In  the first 
place, Adams and Hungate did not ob- 
serve any appreciable constant-rate 
phase of growth for yeast in their media. 
With organisms that show logarithmic 
growth, the estimation of flow rates could 
be simplified. 

Furthermore, steady populations were 
not always obtained in the yeast propa- 
gator. .4lthough Adams and Hungate 
(7 )  did not call attention to the possi- 
bility of cyclic fluctuations, their data 
suggested such an occurrence. More 
recently Maxon and Johnson (70) have 
confirmed the cycling phenomenon in 
a yeast propagator. 

The present research concerns the 
propagation in the logarithmic phase 
of two aerobic bacteria, Bacterium linens 
and Pseudomonas Juorescens; cycling was 
also investigated, using a strain of 
Saccharomyes carlsbergensis. 

Theory of Continuous Propagation 
With Logarithmic Growth 

In  batchwise cultivation single-celled 
organisms usually exhibit a phase of 

logarithmic growth which can be charac- 
terized by the equation 

in which 

S = the total number of cells 
0 = time 
k = a characteristic growth constant 

for the organism, which depends 
also on the environment- 
temperature, nature of medium, 
etc. Units are reciprocal time. 

The rate constant, k ,  is conveniently 
measured by the slope of the growth 
curve when plotted on semilogarithmic 
coordinates. 

To achieve constant population in a 
flow system, the retention time within 
the propagator must equal l / k .  Most 
investigators have been content simply 
to state this fact, but Monod (72) has 
provided rigorous proof based on a 
differential material balance. 

By a material balance on the total 
cells, making use of Equation 1, 

(In + growth) - out = accumulation 

in which V is the volume of liquid in the 
propagator and q is the volumetric 
flow rate. 
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gas-scrubbing bottle appropriately modi- 
fied to allow for inoculation and the 
subsequent feeding of nutrients. The 
overflow was of capillary glass tubing. 
The entire propagator was immersed in 
a water bath held at  constant tempera- 
ture, and there was provision for blowing 
sterile air at measured rates through a 
sintered-glass disk within the propagator. 
Dissolved oxygen, measured polaro- 
graphically, was always in excess of the 
critical concentration for cellular uptake. 
No auxiliary agitation was required 
because of the high air rates used. 

Of more interest to those wishing to 
study continuous fermentation was the 
use of a Sigmamotor pump (E and M 
Enterprises, Middleport, S. Y.)  to 
provide constant flow rates of sterile 
nutrient. This pump has a cam ar- 
rangement, which moves fingerlike 
pieces of metal so as to press fluids 
through rubber or Tygon tubing, which TI ME (HOURS) 

Figure 1 .  
being fed 

Verification of Equation 4 by substituting toxic reagents for nutrients 
passes between these fingers and a 
plate within the pump. Positive pump- 
ing at  flow rates as low as 2 cc. per 

k = O  
Three separate tests are shown. 

Ps. fluarescenr. e,. 1.5 hours. Temperature, 23' C. 
0 Saturated phenol 
0 30% hydrogen peroxide 
A Concentrated sulfuric acid 
..- Theoretical washout rates, Equation 4 

Substitution of phenol begun at 11.5 hours, of peroxide and 
sulfuric acid a t  12.5 hours. 

From Equation 3 the rate of change 
of population is 

(4) dN - = N ( k  - q / V )  
d e  

An alternate form of Equation 4 is 

In 2 
de = N (a, - i) (4a) 

where eo is the familiar generation time 
of the organism, and e, is the mean re- 
tention time in the apparatus. 

For the population to remain constant 
in a continuous propagator, the flow 
rate must be set so that 

(5)  

If this condition is not met, the level of 
growth will change with time in accord 
with Equation 4. 

I t  is assumed in the above analysis 
that flow rates are truly constant, and 
that mixing within the propagator is 
instantaneous and complete. The last 
assumption is generally not so severe a 
restriction as might be supposed (9) .  

Experimental 

The propagator itself was not of 
unusual design. I t  consisted of a 500-cc. 

- 
minute is easily possible. Changes in 
the flow rate may be made either by 
using rubber tubes of different size, or 
by modifying the speed of the pump. 
Freedom from contamination and ease of 
control recommend the use of such a 
pump over any variations of the Mariotte 
bottle as a means of attaining constant 
flow rates. 

Growth was followed by measurements 
of absorbance (optical density), using a 
Coleman Nephocolorimeter (red filter 
No. 8-215). The linear response of the 
instrument was checked by plate counts, 
and when necessary dilutions were made 
before taking absorbance readings. The 
pHmeasurements weremade with a Beck- 
man line-operated meter. Sugar and 
carbon dioxide were measured by 
standard analytical methods. 

The operating procedure was simple. 
To  start the propagator, growth was 
allowed to proceed batchwise until, 
a t  an appropriate level of population, 

Figure 2. 
rate in two tests 

Verification of Equation 4 by altering flow Figure 3. Verification of Equation 4 by altering population level 

E .  linens. Temperature 2 6 '  C. e,. 2.4 hours 
6. linens. Temperature 2 6 '  C. 
A Curve 1 
0 Curve 2 

m 4 9, CHANGED TO 
2.0 CC./MIN. 

IDEAL t . 2 . 2 5  CCJMIN. 

PREOICTCD e y  EQ. 4 

0.1 I I I I I I I 8 
o z 4 e o I O  12 14 io I O  

T I M E  (HOURS) 
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Figure 4. 
propagator 

S. carlsbergensis 
Retention time 3.3 hours 

TIME CHOURS) 

Example of steady cycling observed inlcontinuous yeast 

continuous flow was begun. For Ps. 
juarescms the medium was nutrient 
broth containing 1% glucose; for B. 
linens it was a tryptone-yeast extract 
broth with 0.5% glucose; for 5’. carls- 
bergensis the medium was nutrient broth 
with 2% glucose. 

Performance of Propagator 

Both B. linens and Ps. j4uoresrens 
exhibited logarithmic growth. Their 
behavim in the propagator is shown i n  
Figures 1 to 3. The results are not so 
much a confirmation of the theory as a 
measure of the extent to which the 
particular setup satisfied the initial 
assumptions. 

Of particular interest is Figure 3. 
jvhich describes an experiment wherein 
normal operation was interrupted on 
tWo occasions by a rapid withdrawal of 
medium plus cells followed by replace- 
ment with fresh medium. Figure 3 
demonstrates that for logarithmic growth. 
the population level is not uniquely 
determined by retention time in the 
propagator. Instead, the level of popula- 
tion depends only on the number of the 
cells present a t  the moment the con- 
tinuous flow is started. 

Experimental Studies on Cycling 

The growth of yeast in glucose solu- 
tions does not proceed logarithmically 
for very long. One explanation for the 
short exponential phase is that sugar 
becomes converted into acid as well as 
into cell material; when the pH de- 
creases, the rate of growth is slowed 
down also. Under such circumstances. 
a steady cycling of the population can 
be induced by altering the flow rate 
slightly from the value calculated from 
the slope of the growth curve. 
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All studies were made with S. carls- 
bergensis. During the period of cycling 
the pH, absorbance, glucose concentra- 
tion, and carbon dioxide evolution were 
measured. However, only the ab- 
sorbance and p H  were followed in every 
run made. The results of typical experi- 
ments are shown in Figures 4 and 5. 

The data are not sufficiently exact to 
establish the form of the oscillations, 
but for illustrative purposes simple sine 
waves have been drawn through the 
points. using a wave length of 2 hours. 
Curves for carbon dioxide evolution 
and sugar concentration are 180” out 
of phase with the curve for pH; this is 
in agreement with the findings of Maxon 
and Johnson (70). 

A less obvious but more significant 
correlation from Figures 4 and 5 con- 
cerns the variation of pH \vith cell 
population. The two curves are not 
really in phase as rrported by Maxon 
and Johnson (70), but instead. the pH 
curve lags the population curve by a 
quarter of a wave length. This fact 
gives a clue to the origin of the oscilla- 
tions. 

Cause of Steady Oscillations 

In qualitative terms, one can account 
for the cycling as follows. 

Imagine that the dynamic flow system 
is given some initial disturbance, such 
as a reduction in the flow rate, which 
causes the number of cells to increase 
in accord with Equation 4. As each 
cell manufactures acid the pH falls, and 
as the p H  goes down, it causes a slowing 
up of the growth rate. It is not long 
before there is a net washout of cells. 
and the population decreases. Such a 
sequence of events will result in steady 
oscillation only if there is a time lag in 
the adjustments of pH and population. 

0 2 4  8 IO I2 6 
TIME (HOURS) 

Figure 5. Effect of pH on growth rate 

S. carlsbergensir. 
A. l a g  27 minutes 
E .  l a g  32  minutes 
0 Curve 1 
0 Curve 2 

Retention time 3.3 hours 

In the interaction between the p H  
and the number of cells, it is idle to 
speculate on what is cause and what is 
effect, for the system contains a feedback 
mechanism similar to that encountered 
in electrical circuits. In  fact, the 
system provides an interesting example of 
the “overshoot” phenomena which are 
so often encountered in biological 
systems, and which have been so well 
described by Burton (5, 6) and more 
recently by Denbigh et ai. (7). Periodic- 
ities in chemical reactions and in 
biological reactions such as nerve excita- 
tion have been noted in the literature 
(4, 73, 76) but no comprehensive review 
is available and the references are 
widely scattered. 

The classical studies of Volterra (78) 
and Lotka (8)  on population dynamics 
apply the theory of relaxation oscilla- 
tions to various cases of cycling. I t  is 
felt, however, that a clearer interpreta- 
tion is made possible by applying the 
mathematical approach to automatic 
control problems presented by Minorsky 
( 7 7 ) .  In this analogy, the yeast cells 
in the continuous propagator constitute 
a servo-system with inherent feedback 
and a finite time delay. 

In order to describe the behavior of a 
yeast population, the basic differential 
equation of the propagator, Equation 4, 
must be modified to take into account 
the fact that k is not constant, but is a 
function of *V. Owing to acid formation 
k decreases as .V increases. 

The following transformation is a 
convenient one : 

in which .Yo is the steady population as 
set initially, and ,V represents a fluctuat- 
ing value arising from a disturbance 



applied to the system. Also, the right- 
hand member of Equation 4 may be 
abbreviated by 

( 7 )  f;==k - 4 
V 

so that Equation 4 may be written 

.z’r. = K(‘YL) ( 8 )  

‘This expresses the fact that k depends on 
.2: Equation 8 can be expanded in a 
Taylor series, but for small values of 
.VL only the first two terms need to be 
retained, and 

.VL = K ( N L )  = R, - aiVL ( 9 )  

where a is a positive constant. Substitu- 
tion of N = iV, shows that KO in Equation 
9 is zero. Hence 

iir, + = 0 (10) 

the solution of which is 

.V,> = ,\‘;e-fle (11) 

\\here is a small initial disturbance 
of the population. Equation 11 shows 
that the disturbance will always decay 
exponentially, and that there is no 
tendency for self-excited oscillations. 

O n  the other hand, if there is a time 
delay in the adjustment, so that K 
depends upon the value of .VL at  some 
previous time, stable oscillations are a 
natural consequence. Equation 10 may 
be written 

(12) 
where the bar above -VL signifies a re- 
tarded variable. If the time lag for 
ddjustment is &?, 

.zTL + a s L  = 0 

Approximate solutions of Equations 12 
and 13 are unreliable, but Minorsky 
(77)  has provided an exact solution for 
such linear equations of infinite order: 

-1’” = NLea8 e ’w (14) 

This equation describes a pulsation of 
frequency w .  and amplitude propor- 
tional to e m s .  It suggests that it is the 
logarithm of the population which 
fluctuates sinusoidally. Baron ( Z ) ,  fol- 
lowing Minorsky’s treatment, has shown 
that for stable self-excited oscillations 
where the amplitude is independent of 
time 

7r w = -  
2(AO) 

or (15) 

Ae = - 
x 
4 

where X is the \vave length in hours. 
The time lag for S. carlsbergensi3 was, 

therefore. about 30 minutes (see Figures 
4 and S), which is much too long to be 
ascribed to any diffusional resistance. 
O n  the other hand, metabolic lags in 
adjustment to p H  may be of this order, 
as shown by separate growth experiments 
with yeast. 

In  these experiments, the cells were 
grown batchwise at constant p H  levels, 
which were controlled by the manual 
addition of acid or alkali; p H  electrodes 
were immersed in the culture media, so 
that constant checks of pH could be 
made. After a logarithmic phase had 
become established, the p H  level was 
changed abruptly by 0.5 unit, without 
appreciably diluting the medium. The 
results are shown in Figure 6. After 
a lag period of about 30 minutes, growth 
was resumed at a new rate. .4t pH 5.0 
the generation time was 2.0 hours, com- 
pared to 2.5 hours at p H  4.5. h’ilson 
(20) has shown that the magnitude of 
this difference in e, is of the right order 
to explain the extent of cycling in ,V, 
Nevertheless. other factors besides pH 
may also be influencing cell division. 

These batch experiments failed to 
demonstrate any “overshoot,” for the 
response to a change in p H  Ivas imme- 

Figure 6. Growth of S. carlsbergensis in batch vessel at constant pH levels 
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diate. Growth did not continue un-  
abated as if nothing had happened; 
instead, it stopped altogether for a time. 
Possibly the changes in p H  were too 
sudden and too severe, but in any case 
the experiment showed that metabolic 
lags of the order of 30 minutes are 
involved. 

Clearly much work remains to be done. 
The purpose of this investigation was 
simply to demonstrate that by critical 
analysis of data from a continuous 
propagator it is possible to find clues 
concerning metabolic behavior. 
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